

Towards a Standard Cortical Observer Model in V1-V3

Noah C. Benson¹, Catherine Olsson², William F. Broderick¹, Jonathan Winawer^{1,2}

¹Department of Psychology and ²Center for Neural Science New York University, New York, NY

Summary

A goal of visual neuroscience is the ability to predict cortical responses for a wide range of visual stimuli. We implemented a model that predicts fMRI responses in each voxel in V1, V2, and V3 to arbitrary, gray-scale images..

Goals

- Unite anatomically-based models of retinotopy^{1,2} with stimulus- and pRF-based models of cortical activity³
- Extend existing models³ by adding multi-band support
- Provide tools and libraries for using, modifying, and implementing cortical models
- Create a public database and interactive site for sharing and comparing models and functional data

Standard Cortical Observer Model

We extend the two-stage cascade model of Kay, Winawer *et al.* $(2013)^3$

Model and Software Availability

All software is freely available and is designed with modularity and customization in mind. We provide both a Github repository and a Docker image.

Additionally, we are developing a database and website that supports running SCO model calculations, uploading and storing relevant anatomical and functional data, comparing data with models, building/testing/modifying models, and collaborating across labs.

https://github.com/noahbenson/sco
Python library for predictions;
flexible interface designed for
modularity and extension

Model Use Case 1: Prediction

The simplest use of the model is to make predictions from an uploaded subject and image set. Note that no parameter-fitting is required; these predictions are not learned.

Model Use Case 2: Evaluation and Iteration

One can additionally upload functional data to evaluate our model or alternate parameterizations of our model.

Our upcoming data-sharing website will enable both use cases online.

Conclusions

- · We reproduce and extend previous models
- We provide a flexible framework for developing and communicating similar models
- We provide a community space for sharing data and developing forward models of the visual system

References

- 1. Benson NC et al. (2012) Curr. Biol. 22:2081-5
- 2. Benson NC et al. (2014) PLoS Comput. Biol. 10:e1003538
- 3. Kay K et al. (2013) PLoS Comput. Biol. 9:e1003079
- 4. Dumoulin SO, Wandell BA (2008) Neuroimage 39:647-60
- 5. Kay KN et al. (2008) Nature 452:352-355