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Bayesian nonparametric models characterize
instantaneous strategies in a competitive dynamic
game
Kelsey R. McDonald 1,2,3, William F. Broderick 4, Scott A. Huettel 1,2,3 & John M. Pearson 1,2,3,5

Previous studies of strategic social interaction in game theory have predominantly used

games with clearly-defined turns and limited choices. Yet, most real-world social behaviors

involve dynamic, coevolving decisions by interacting agents, which poses challenges for

creating tractable models of behavior. Here, using a game in which humans competed against

both real and artificial opponents, we show that it is possible to quantify the instantaneous

dynamic coupling between agents. Adopting a reinforcement learning approach, we use

Gaussian Processes to model the policy and value functions of participants as a function of

both game state and opponent identity. We found that higher-scoring participants timed their

final change in direction to moments when the opponent’s counter-strategy was weaker,

while lower-scoring participants less precisely timed their final moves. This approach offers a

natural set of metrics for facilitating analysis at multiple timescales and suggests new classes

of experimental paradigms for assessing behavior.
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Over the last 15 years, game theory has been foundational
in establishing cognitive and biological mechanisms of
strategic decision making1–4. Paradigms like Matching

Pennies, Trust/Ultimatum Games, and Prisoner’s Dilemma have
used simple choices in highly standardized contexts to yield key
insights into social decision-making in humans and animals3–12.
These game theory paradigms draw upon a vast literature
detailing how rational players would behave1,4,5,13–15, yet studies
comparing human behavior to these normative solutions have
found that humans often violate rational predictions1,4,13,16.

While a central aim of game theory is to describe how people
should make decisions, describing how humans actually make
decisions is of particular interest to social scientists. Indeed, many
of the features that have made game theory paradigms analyti-
cally attractive—discrete choices, turn-taking, known payouts—
are abstractions away from real-world social interactions. For
instance, when buyers haggle over the price of a good, they
interact in real time, using a combination of nonverbal cues,
strategic planning, perspective taking, and value judgment. Their
continuous, dynamic interaction thus poses a challenge to any
computational framework for the study of social decisions4,17,18.
Moreover, while game theory has made progress in generalizing
optimal strategies for games in continuous time and space, such
as duels and auction bidding4,14,19–22, considerably less has been
done to quantify highly dynamic behavior in cases where optimal
strategies remain challenging to compute. While game theory has
proven highly successful in analyzing various sorts of equilibria
players might settle into, considerably less is known about the
processes by which these equilibria are reached23,24. As a result, it
is desirable to develop analytical tools capable of quantifying
strategic dynamics while maintaining the mathematical rigor that
has made game theory such a productive framework.

Here, we introduce a computational modeling framework that
borrows from recent advances in reinforcement learning25–31,
game theory14,20,21, and nonparametric Bayesian modeling32–34

to capture these social dynamics. Our approach produces models
of behavior that are both flexible enough to capture the variability
present in a continuously evolving strategic setting and powerful
enough to quantify strategic differences across participants, trials,
and even individual moments within trials. Our testbed for these
ideas is a competitive task in which human participants played
against both a human opponent and a computer opponent in a
real time, movement-based game. This paradigm generates a rich
complexity in individuals’ behavior that can be succinctly
described by individualized, instantaneous policy and value
functions, facilitating analysis at multiple timescales of interest.
This approach quantifies complex interactions between multiple
agents in a parsimonious manner and suggests new classes of
tractable paradigms for studying human behavior and decision
making.

Results
Penalty shot task. We adapted a zero-sum dynamic control task,
inspired by a penalty shot in hockey18. The task was viewed on a
computer screen and played by two players: an experimental
participant (N= 82) who controlled an on-screen circle, or puck,
and another long-term participant who controlled an on-screen
bar, acting as the goalie. Hereafter, we will refer to these players as
the participant and the opponent, respectively. The puck began
each trial at the left of the screen and moved rightward at a
constant horizontal speed. The participant’s objective was to score
by crossing a goal line located at the right end of the screen
behind the opponent. The opponent’s task was to block the puck
from reaching the goal line. Each player moved his or her avatar
using a joystick. Both players were only able to control the vertical

velocities of their respective avatars, though the puck and bar had
distinct game physics (see Methods and Supplementary Meth-
ods). See Fig. 1a, b for task progression and sample trajectories, as
well as the Supplementary Movie 1 for a movie demonstrating
real game play.

Participants played the penalty shot task in an fMRI scanner.
Here, we report only the behavioral data from this experiment.
On each trial, participants played against a randomly selected
opponent. On half of the trials, this was a human opponent,
located outside the scanner (each participant interacted with only
one human, but two long-term human participants played as the
goalie through data collection). On the other half of trials, the
opponent was a computer algorithm. This opponent followed a
track-then-guess heuristic in which it attempted to match the
puck’s vertical position (with a variable reaction time) before
randomly choosing a direction to move at maximal speed near
the end of the trial. This choice was motivated not only by pilot
data that showed such a strategy was difficult for participants to
exploit, but also by past work analyzing the anticipatory strategies
of goalkeepers35–37. When subjects were asked after the
experiment which opponent had a better strategy, half of the
subjects (N= 41) reported that they thought the human
opponent was better, and the other half reported that the
computer algorithm was better, suggesting that the computer
algorithm did, in fact, play at a level comparable to both human
opponents.

As expected, participants exhibited considerable variability in
game play. Figure 1 shows all trajectories for a representative pair
of subjects. A salient feature of our paradigm is its accommoda-
tion of widely varying individual strategies. For each of our main
analyses, we only display findings for a subset of participants;
plots for all representative subjects for all analyses are available in
Supplementary Figs. 4–11. Trajectories varied widely both within
and across participants, despite the fact that players each only had
one continuous degree of freedom (position along the y-axis). For
example, Participant 3 (Fig. 1c) demonstrated highly stereotyped
play, with most trials exhibiting a “down-up-guess” approach. By
contrast, Participant 4’s (Fig. 1d) trajectories were dispersed
throughout the screen, perhaps resulting in less predictable play.
Participants also experienced highly variable win rates, which
ranged from 43–76% (against human: 34–83%; computer
42–73%).

Gaussian process models. Observed data for each trial were
movement trajectories for the puck and the bar, each spanning
approximately 1.5 s (94–96 discrete time points). While it is
possible to model these time series directly18, we observed that
puck trajectories could be reduced to a series of straight-line
segments of near-maximal velocity separated by change points
(Fig. 2a). That is, we could redefine the decision available to the
participant at each moment as whether or not to switch direction.
This transforms a time-series modeling problem into a more
tractable change point prediction problem, for which our pre-
dictors are a small number of game state variables.

Viewed through the lens of reinforcement learning, the
decision of whether to switch direction at time t is an action,
at, and the probability of this action given a state of the world st is
given by the policy function: Π(at, st, ω)= p(at|st, ω), where we let
st denote a vector of predictors at each timepoint and ω is a
binary variable indicating the opponent’s identity (computer= 0,
human= 1)25. In our case, we define the action space as a single
binary variable, with 1 indicating a change in direction and a 0
indicating continuation along the current trajectory. However, the
state s remains continuous and includes 7 predictor variables: the
x and y positions of the puck, the y position of the bar, their
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respective vertical velocities, the time since the occurrence of the
last change point (normalized to 1 by dividing by total trial
length), and an opponent experience variable that ranged from 0
(first trial) to 1 (last trial) that was specific to each opponent and
reflected potential strategic adaptation over the course of the
experiment. Finally, we simplify our notation, defining π(st, ω)=
p(at= 1|st, ω). Because our input space is of moderate dimension,
a model for π(s, ω) will be a continuous function of s instead of a
large matrix, as it would be for a model with a discrete state space.
Our contribution is to show that nonparametric methods allow us
to address the challenge of modeling π using only sparsely
sampled data.

Our decision to model change point probabilities as a function
only of states and opponents means that the data at each time are
independent of each other given these variables. Thus, our
approach is also equivalent to a binary classification problem.
Binary classification is well-studied, with many methods available,
including logistic regression, support vector machines, and neural
networks38. Our model selection was guided by three require-
ments: First, the model should be flexible enough to capture the

rich diversity of player behavior. Second, the model should
appropriately handle a small number of change points (≈4.6%)
with an input space of moderate dimension. Third, the model
should avoid overfitting while providing a principled estimate of
uncertainty. For these reasons, we fit each participant’s data using
a Gaussian Process (GP) classification model.

A Gaussian Process (GP) is a distribution over functions. GPs
are widely used in spatial and time series modeling for their
combination of flexibility and ability to generalize from even
modest data32,39. In the same way that a sample from a normal
distribution is a real number and a sample from a Bernoulli
distribution is a binary variable, a sample from a GP is an entire
function (e.g., a univariate time series (d= 1) or spatial density
(d= 2)). Gaussian Processes have the advantage of providing a
principled, Bayesian measure of uncertainty over functions32, and
while some types of GPs are equivalent to infinitely-wide, single-
layer neural networks, they have been shown to outperform
neural networks in avoiding overfitting on small to moderate
datasets32,40–42. Moreover, they are the method of choice when
modeling time courses based on sparse or irregularly-sampled

Human opponent
Computer opponent

Human opponent
Computer opponent

Participant 3

Puck
Opponent

b

Computer

Win

a

Participant time Opponent time

c d
Participant 4

Participant time Opponent time

Time

Fig. 1 Strategic heterogeneity in dynamic decision-making. a Task progression: Following a jittered fixation cue, text indicated the identity of the opponent
on the upcoming trial for 2 s. Play commenced after a variable delay during which the screen displayed a fixation cue. At the conclusion of each trial, which
lasted roughly 1.5 s, colored text indicated the winner (green “Win” if the participant won; red “Loss” if the participant lost) for 1.5 s. b Game play on a
single trial. The puck moves from left to right at constant horizontal velocity. The bar was only allowed to move vertically, but is depicted as moving from
the right side of the screen inward toward the goal line for visualization purposes. c, d All of the trajectories for Participant 3 (c) and Participant 4 (d),
demonstrating the heterogeneity observed across participants. Note variability in both on-screen positions’ visited and trajectory shape: Participant 3 is
much more consistent in game play, while Participant 4 was more variable. Trials played against the human opponent are displayed in blue. Trials played
against the computer opponent are in green
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data43,44. Thus, GPs offer competitive modeling performance
with the added benefits of uncertainty estimation and
differentiability.

More formally, a GP is fully characterized by a mean function
m(x) (usually assumed to be 0 a priori) and a covariance function
k(x, x′) that defines the correlation between values of f at different
input points32:

f ðxÞ � GPðmðxÞ; kðx; x′ÞÞ ð1Þ

mðxÞ ¼ E½f ðxÞ� ð2Þ

kðx; x′Þ ¼ cov½f ðxÞf ðx′Þ� ð3Þ
where f(x) is a random function drawn from the GP. By
definition, the joint distribution of the observed dataset D ¼
f ðxiÞji ¼ 1¼ df g is multivariate normal with dimension d, mean
μi=m(xi), and covariance Σij ¼ kðxi; xjÞ.

As stated above, we chose to model players’ policies via a GP
classification model that predicted an upcoming change in the
puck’s direction from the current state s and opponent identity ω.
Following standard techniques32,45, we assumed that binary
change point observations ai were Bernoulli distributed according
to the policy π(s, ω) and that the policy itself was related to an

underlying GP:

a � Bernoulliðπðs;ωÞÞ ð4Þ

Φ�1ðπÞ � f ðs;ωÞ � GPð0; kÞ ð5Þ
where Φ−1 is the inverse cumulative normal distribution (also
called the probit or quantile function) and GPð0; kÞ is a GP prior
on f with mean 0 and kernel function k. Because we assume that f
is a smooth function of its inputs, we choose the common radial
basis function (RBF) kernel32:

kðx; x′Þ ¼ σ2 exp
X
i¼1

ðxi � x′iÞ2
λ2i

 !
ð6Þ

with i indexing input variables and σi and λi hyperparameters
setting the overall magnitude of the covariance and the length
scale of correlations along each dimension, respectively. Here, x
includes both s and ω. Even though ω is a discrete parameter, we
approximate it as a continuous variable, as is often done in
Bayesian modeling using GPs46.

We found that our GP classification model accurately captured
the diverse patterns present in participants’ data (Fig. 2a, b, d).
That is, the model had a higher probability of predicting a change
point in regions of the screen where change points actually
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occurred. This is a direct result both of the nonparametric nature
of the GP—the model adapts its complexity to the data—as well
as the smoothing effects of the prior. Held-out test data from each
participant yielded a median area under the curve (AUC) score of
94% (Fig. 2c). For comparison, we also fit a regularized logistic
regression for each subject, but for no subject did it outperform
our GP model (see Supplementary Fig. 12).

Model fits revealed that participant policies were most strongly
affected by the participant’s own velocity, followed by the time
since the previous change point and the participant’s own vertical
position (median length scales: 0.18, 0.23, and 0.43, respectively;
standard deviations: 0.08, 0.40, and 0.71, respectively). That is,
participants were more weakly influenced by their opponent’s
position and velocity than by their own movements, suggesting
that their strategies were only secondarily reactive. Moreover,
hyperparameters for the opponent experience variable, which
captured changes in strategy over the course of the experiment,
were large, indicating that their strategies quickly stabilized and
remained consistent throughout play. In fact, trajectories for most
players did not differ markedly in shape between the first and last
ten trials (Supplementary Figs. 18 and 19).

Sensitivity to opponent actions. We next sought to quantify how
much participants’ switching behavior changed as a function of
the opponent’s actions. Because our change point policy model is
based on a smooth Gaussian Process, we can quantify this sen-
sitivity using gradients of the GP f=Φ−1(π) with respect to the
opponent’s position and velocity (see Methods). We then used
these gradients to define a moment-by-moment sensitivity index.
Since the gradients of the GP measure the degree to which small
changes in the current game state affect the participant’s prob-
ability of changing course, gradients with respect to the oppo-
nent’s position and velocity capture the degree to which the
participant’s current behavior is sensitive to the opponent’s
actions.

Just as switch probability changes dynamically with game state,
sensitivity to opponent action varies throughout the trial.
Figure 3a illustrates this for a single subject. In order to quantify

this, we asked whether participants’ sensitivity differed depending
on opponent, and whether this effect changed during the trial. As
shown in Fig. 3b, most subjects (71%) were consistently more
sensitive to one of the opponents in both phases of the trial. The
few subjects who appear in the off-diagonal quadrants exhibited
greater sensitivity to one opponent early and the other late. Thus,
sensitivity-based metrics not only offer a precise characterization
of variability in player strategies, but they also capture differences
in play against each opponent.

Sensitivity metrics characterize behavior. The sensitivity metric
defined above represents a particular moment-by-moment mea-
sure of the degree to which one player (the participant) is coupled
to the actions of the other (the opponent). Based on our prior
expectation, we chose a combination of sensitivities to opponent
position and velocity, but other combinations are equally plau-
sible. In fact, one could define a sensitivity metric to each input
variable individually. Here, we show that such an approach
produces a principled characterization of participants’ behavior
across multiple timescales. Indeed, when aggregated at the par-
ticipant level, these indices fully characterize the policy model.

We defined one sensitivity for each input variable equal to the
square of the gradient along each input direction (see Methods).
This yielded eight new sensitivity indices (seven for state plus one
for opponent identity) in addition to the opponent action
sensitivity defined above. However, our previous index can be
defined in terms of these new indices, so there are only eight
unique values in the set. The most important feature of these new
indices is that, like the policy, they are defined moment-by-
moment, but can be aggregated across multiple levels of
granularity, including trial and participant averages. As in classic
analysis of variance (ANOVA), we can consider each index value
at each data point as the sum of three terms: a participant-level
mean, a trial-level offset from this mean, and a residual specific to
the data point. Likewise, we can estimate variances within trial
(residual), across trials, and across our participant population. As
in ANOVA, the sum of these variances, appropriately weighted,
equals the total variance in the data. Normalizing by this total
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variance yields a set of three positive terms that sums to 1:

σ2participants
σ2total

þ σ2trials
σ2total

þ σ2residual
σ2total

¼ 1 ð7Þ

To illustrate this decomposition, we plot the trial- and subject-
level variance for each predictor variable in Fig. 4a. We find that
the subjects’ strategies, as summarized by the baseline probability
of switching, exhibit the largest variance across participants,
indicating that the differences in change point frequency apparent
in Fig. 1c, d are relatively more trait-like than our sensitivity
measures. Perhaps surprisingly, while the sensitivities to oppo-
nent position and velocity demonstrate relatively little across-
subject variance, the aggregated metric defining opponent action
sensitivity has more across-subject variability, suggesting a more
stable index. To test whether these effects could be the result of
chance, we ran a permutation test in which we performed the
variance decomposition analysis 1000 times with the trial and
subject labels shuffled. These results, plotted in gray, tightly
cluster around 0% for every variable. That is, our sensitivity
indices in all cases account for significant variance in the data.

Finally, we note an important relationship between participant-
level sensitivities and model hyperparameters. Because Gaussian
Processes, like Gaussian distributions, are completely

characterized by their mean and covariance, summaries of a
Gaussian Process taken over the data can only be functions of the
hyperparameters that define the mean and covariance. That is, we
expect on mathematical grounds that our sensitivities, when
averaged across an entire participant’s data, should be related to
the model’s hyperparameters (see Supplementary Note 2).
Figure 4b, c illustrates this relationship for two hyperparameter-
sensitivity pairs. Figure 4b shows that the noise parameter of our
Gaussian Process model, σ2 is indeed correlated with the variance
in probability of switching across timepoints for each participant
(R= 0.56, t= 6.09, p < 0.0001). Likewise, Fig. 4c shows that the
logged hyperparameter controlling opponent identity effects in
the GP correlates negatively with each participant’s sensitivity to
the same variable (R=−0.64, t= 7.43, p < 0.0001). In both cases,
this is exactly what we expect: the noise hyperparameter for a
classification model is related to the variance in its predictions,
while low sensitivities correspond to long correlation length
scales. Thus, our gradient-based sensitivity metrics naturally
extend GP hyperparameters to the timepoint level, providing a
principled characterization of strategy suitable for analysis at
multiple timescales.

Expected value of making one’s final move. We have shown that
we can use nonparametric methods to estimate the policy
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participants use when playing a dynamic, strategic game. Yet this
analysis says nothing about how effective these policies are. So
how do participants’ choices at each moment translate to wins
and losses? To answer this, we separately modeled each partici-
pant’s action value Qπ(a|s, ω): the expected value of taking action
a in state s against opponent ω and playing according to policy π
thereafter. As indicated by notation, this value is policy-
dependent. That is, each policy π uniquely determines a value
function Qπ (see Supplementary Fig. 2a). In typical reinforcement
learning models, policies are likewise dependent on action values:
Given action values, Q, policies choose actions based on a softmax
function or other rule25. Thus, there is a mapping in the reverse
direction from action values to policies. The Bellman Equation
stipulates that for optimal learners, the optimal policy and action
values determine one another25, but this need not hold for
nonoptimal learners.

To capture this distinction, we also modeled each subject’s
empirical action value function Q(a|s, ω). The action value model
took as inputs the instantaneous state, opponent, and observed
action at that time and attempted to predict from those data
whether the participant subsequently won the trial. We used the
same Gaussian Process classification approach as before, only this
time predicting the trial outcome and using the participant’s
observed action (i.e., did the participant make a direction change
at the next timepoint) as an additional input. Results from this
model are discussed in Supplementary Note 6. As shown in
Supplementary Figs. 2 and 3, modeling expected value at each
timepoint allows us to quantify how fluctuations in game state
impact likelihood of winning. Once again, the GP model
outperforms a regularized logistic regression for each participant
in our cohort (see Supplementary Fig. 13).

While our empirical expected value model successfully predicts
each player’s instantaneous prospects, it suffers from a key
drawback: because it is conditioned on both players’ observed
(and coupled) strategies, it does little to disentangle the effects of
each player’s decisions on the trial’s outcome. However, our task
bears a strong resemblance to the class of differential games
known as duels14,20,22, in which players continuously evaluate
options but choose only a single action. Along similar lines, we
chose to analyze the expected value of the participant changing
direction a final time and continuing on a straight-line trajectory
thereafter. In keeping with the hockey analogy, this is equivalent
to the instantaneous value of shooting the puck: the puck changes
direction and moves under inertia thereafter. We estimated this
value using the final change point of each trial as training data,
with each opponent (two human players and the computer
algorithm) modeled by a separate GP. This is justified by our
assumption that, once participants have made their final move, all
participant strategies are identical and trivial: the participant has
no choices remaining. In reality, opponents in our game have
imperfect information about whether participants have in fact
committed to a final move, and so opponent beliefs about
individual participants may be relevant in principle. Nonetheless,
given the speed of the game and the following results, such an
assumption serves as a useful baseline against which more
elaborate assumptions about opponents’ beliefs might be tested.

More formally, we estimated Qπfinalmove
ðs;ωÞ, the participant’s

expected value of making the final direction change in state s against
opponent ω. Here again, state s includes the positions and vertical
velocities of both players, as well as the normalized time since the
subject’s last change point. Note the primary distinction between our
action value models: The empirical EV model estimates the value of
action a to the participant at a particular moment, assuming both
players follows their usual strategies π thereafter. The final move EV
again also estimates the value to the participant of changing
direction, but assumes no change points thereafter.

Unsurprisingly, we found that there was a strong correlation
between each subject’s average expected value at final move and
win rate against each opponent (Computer trials: R= 0.31, p=
0.004; trials against human opponent #1: R= 0.665, p < 0.0001;
trials against human opponent #2: R= 0.65, p < 0.0001), demon-
strating that this value is a good proxy for both win rate and
shooter skill. Furthermore, when we plotted participants’
estimated EV as a function of time within trial, we found that
higher-scoring participants were more likely to locate their final
change points during periods of high final move EV. Conversely,
worse subjects showed the opposite pattern: they timed their final
moves during periods of relatively low expected value (Fig. 5).
Indeed, Ejtmove � toptmovej, the expected deviation between partici-
pants’ actual and optimal final move times across trials, was
significantly correlated with win rate against each opponent
(computer trials: R=−0.30, p= 0.0058; human opponent #1
trials: R=−0.48, p= 0.0004; human opponent #2 trials: R=
−0.48, p= 0.0054). In other words, the most successful
participants were those who better concentrated their final
change points within an optimal temporal window against each
opponent.

However, it is also possible that higher-scoring participants
might also create better shot opportunities for themselves in the
early and middle stages of the trial, improving their overall
prospects. For these participants, precise timing of the final move
might conceivably be less important, due to their advantageous
positioning early on in the trial. A schematic of expected value as
a function of time in trial according to these two hypotheses
(advantageous positioning vs. advantageous timing of final
moves) are shown in Fig. 6a, b. If high-scoring participants are
skilled at making decisions early on in the trial such that they
place themselves in overall high expected value states, then one
would observe vertical shifts in expected value between subjects
near the end of each trial; conversely, a difference in the timing of
final moves throughout trials need not be observed under this
advantageous positioning hypothesis (Fig. 6a). By contrast, under
an advantageous timing hypothesis, if timing one’s final move is
the most important factor in winning, we expect that the
distribution of final move locations in time to discriminate
between better and worse players (Fig. 6b). Observed data from
the best and worst players against both a human opponent
(Fig. 6c) and the computer opponent (Fig. 6d) show that timing
one’s final moves is, in fact, the decisive factor. While both the
highest and lowest-scoring subjects experience similar expected
values during the trial, higher-scoring subjects distribute their
final move change points more effectively. This fits with the
intuition of Fig. 5 and holds across our population (Supplemen-
tary Fig. 17).

Discussion
Increasing interest in dynamic social interactions has necessitated
a commensurate increase in the complexity of behavioral studies,
but the methods used to analyze these new paradigms often lack
the flexibility to handle the data produced. Here, we have shown
that Gaussian Processes make it possible both to fit complex
behavioral strategies and to forge links with the literature on
reinforcement learning and game theory. Thus, our work is
related to ideas in both inverse reinforcement learning47–49,
which seeks to estimate, rather than learn, policies and value
functions capable of generating observed behavior and also the
recent surge of interest in multi-agent reinforcement learning
systems50–52. Our problem can be viewed as a limit of the game
theory context in which decisions take place simultaneously in
continuous time as well as dynamically against another
opponent5,52,53. Our work stands to complement those results by
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focusing on the dynamics that describe players’ various decisions
made throughout the task (in the policy model) as well as how
valuable these actions are (in both action value models). This
emphasis on the dynamic coupling of agents also bring us closer
to real-world social interactions, in which decisions are based on
coevolving exchanges.

There are several strengths to recommend our computational
modeling framework. First, Bayesian estimation of continuous
policy and value functions results in principled measures of
uncertainty32. The resulting statistical inferences are better indi-
cators of model fit than point estimates obtained from maximum
likelihood methods. Second, differentiability of policies and value
functions allows us to derive sensitivity estimates that quantify
the coupling between agents, which we have shown can char-
acterize individual differences in play on a variety of timescales.
Third, modeling the joint distribution of both players allows us to
perform counterfactual analyses (as shown in Supplementary
Note 5) that dissociate the effects of player identity from those of
game context—an intractable problem for most competing
approaches5. Finally, dissociating policy and action value func-
tions allows us to consider observed behavior without either
assuming optimality or being able to calculate what optimal
behavior should be25,54.

Importantly, our approach of using flexible models like
Gaussian Processes that capture the richness observed in real data

is not limited to a specific task. It generalizes readily to more than
two agents, both cooperative and competitive contexts, and a
wide variety of reward structures. All of these variants can be
captured by simply enlarging the state space to accommodate the
additional variables characterizing each agent, as is done in joint
action learning algorithms55,56. Likewise, our data need not have
been sampled densely or even at regular intervals, since Gaussian
Processes have proven hugely influential in fields like ecology39

and health data44 where sparse observations are the norm. But
our method is likely to prove most valuable for examinations of
decision making in natural settings like shopping, foraging, or
web browsing, where the number of covariates is large and the
number of events (purchases, food items, clicks) is comparatively
small. Nevertheless, the specific Gaussian Process formulation
we have chosen has several limits. First, we have assumed that
policies can be described as functions of instantaneous game
state, which precludes situations where current behavior may
depend on recent history. Second, as the number of agents grows,
the required number of state variables grows exponentially. In
this case, the data necessarily become even sparser and inferences
more uncertain. Finally, even approximate GP methods can
struggle when scaling to very large datasets. As a result, when
data are abundant, parametric models like neural networks,
which can be trained efficiently on subsets of data, may be more
appropriate.
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score against the computer opponent. c The participant with the lowest score against a human opponent. d The participant with the lowest score against
the computer opponent. More successful participants better aligned their final change points with critical periods in which the opponent was at a
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Our specific application yielded significant insights into
humans’ dynamic strategic interaction with both human and
computer opponents. We found that participants exhibited a
large variety of trajectories against both opponents, yet a
majority of our participants demonstrated a heightened oppo-
nent sensitivity toward one particular goalie throughout the trial,
and that subjects’ sensitivity to opponent actions demonstrated
substantial subject-level variability. The importance of these
policy-derived metrics, particularly the sensitivities, is consistent
with the findings of many groups that an ability to model the
intentions of another agent plays a central role in human social
interaction8,57–59. For our task, in which within-trial dynamics
are more variable than across-trial changes in strategy, an ana-
lysis of variance showed that many sensitivities, including the
baseline probability of switching and our sensitivity to opponent
action metric, were relatively more trait-like than state-like,
consistent with the idea that the underlying variability in our
participant population is not in strategic heuristics but in the
degree to which players’ actions are coupled to one another. This
decomposition of variance for continuous, task-related pre-
dictors can be used in future studies for systematically deter-
mining whether a given covariate characterizes a trait-like or
state-like process, which is particularly important when investi-
gating individual differences in the social sciences.

Finally, we showed that an analysis of participants’ evolving
prospects of winning easily distinguished between the track-then-
guess heuristic of the computer opponent and the more complex

human opponents. Such an analysis allows us not only to assess
the degree to which a given moment in the trial is critical to a
player’s future prospects, but also how successful players are in
seizing these opportunities. This is a result of the fact that action
values are functions of both players’ strategies. More specifically,
by characterizing our task as a stopping problem, in which par-
ticipants’ objective was to time a single decision, we showed that
an ability to accurately time one’s final change point during
periods of high expected value differentiated high-scoring from
low-scoring participants. That effective players capitalize on
momentary advantage is intuitive and relates to empirical work
showing that expected value plays a role in strategic decision-
making3,10,60, as well as work which frames many common
decisions in terms of foraging or search problems61–63.

Perhaps most important for studies of social and decision
neuroscience, our models suggest a natural set of variables of
interest at a hierarchy of temporal scales. While the policies and
action values we derive offer instantaneous regressors at the tens
of milliseconds resolution of electrophysiology, including EEG
and ECoG, these metrics can also be averaged at the trial and
participant level for use with fMRI and PET. Providing compu-
tational frameworks for capturing complex temporal dynamics is
crucial in learning and decision making25,64,65. The key advantage
of our approach lies in an ability to identify both behavioral
tipping points (high sensitivity of policy) and reward tipping
points (large differences in action value) and distinguish between
the two. This is particularly crucial in the analysis of neural data,
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Fig. 6 Data support advantageous timing over position hypothesis. Schematic of expected value and distribution of final change points as a function of win
rate according to an advantageous position (H1) or timing hypothesis (H2). Red curves indicate the participant’s expected value of the final move at each
time. Blue distributions indicate the distributions of these final change points. a According to H1, higher-scoring participants are those who create better
shot opportunites for themselves in the mid- and late-game, increasing their overall expected value. b According to H2, all participants experience roughly
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consistent with H2 but not H1, implying that strategic timing is more important than positional advantage in task success
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where one wishes to designate different types of cognitive events
in addition to observational events (i.e., shifts in probability of
winning without changes in action, or changes of mind)66,67.
Taken together, our results and overall approach offer a new path
to the use of more naturalistic paradigms in the study and
modeling of social interaction.

Methods
Participants. This study was approved by the Institutional Review Board of Duke
University Medical Center. Data from 82 healthy volunteers (age range: 18–48
years; 45 females; 37 males) were included in the behavioral analyses. All partici-
pants gave written informed consent to participate in this experiment and were
informed that no deception would be used throughout the experiment. Two long-
term participants played the role of the human opponent in the penalty shot task,
but each participant played against only one human opponent. The human
opponents were not members of the study team and had no stake in the outcome of
the study apart from maximizing their own compensation. Participants were told
that on each trial they would play against either the human opponent they had met
with during the consenting process, or against a computer algorithm. We
emphasized to participants that deception would not be used in our task regarding
who they were in fact playing against (i.e., when the task indicated they would play
against the computer opponent next, they would indeed play against the compu-
ter). Our task was incentive-compatible: both the experimental participant and the
human opponent were rewarded in monetary bonuses that were dependent on how
frequently each player won.

Participants began the experiment with a 4 min practice block followed by three
experimental blocks, each ~12 min long. Participants played as many trials as they
could within each 12 min block, resulting in roughly 200 trials in total for each
participant (~100 trials per opponent condition). At the beginning of each trial,
each participant was prompted to center the joystick in order for the next trial to
begin. A centered fixation cross was then presented for a jittered amount of time,
ranging from 1.0 to 7.5 s. Following the fixation cross, the identity of the opponent
on the upcoming trial (either “Computer” or the name of the human opponent)
was displayed in centered text for 2 s. Each trial lasted roughly 1.5 s. Following the
end of a trial, centered text displaying “WIN” or “LOSS” would appear on-screen,
indicating the previous trial’s outcome. Following the experiment, participants
completed a post-task survey, were debriefed, and compensated.

Puck and bar dynamics. The puck was represented as a colored circle (of diameter
1
64 of the screen width) and started each trial at normalized coordinate position
(−0.75, 0). The goal line was positioned at x= 0.77. The puck moved with constant
horizontal velocity vp and vertical velocity vput, where ut∈ [−1, 1] was the vertical
joystick input at time t. The participant controlled only the vertical velocity of the
puck. The puck was constrained to remain onscreen. At each time t, the coordi-
nates of the puck were updated according to:

xtþ1 ¼ xt þ vp ð8Þ

ytþ1 ¼ yt þ vput : ð9Þ
Both the human and computer opponents were identically represented on-

screen by a vertical bar. The bar began each trial at (0.75, 0), immediately to the left
of the goal line, and could only move up or down. Unlike the puck, the opponent
was able to accelerate: If the opponent maintained direction at near-maximal input
(|u|∈ [0.8, 1]) for three consecutive time steps, the bar’s maximal velocity began to
increase on the third step. That is, at each time step

vω  
2
3
θvp ð10Þ

θ θ þ 0:85; if accelerating

1; otherwise

�
ð11Þ

ytþ1 ¼ yt þ vωut : ð12Þ

Gaussian process model fitting. Traditionally, performing full Bayesian inference
in Gaussian processes has been prohibitive, with computation scaling as OðN3Þ,
with N the number of training data points. However, recent advances in approx-
imate inference methods based on sparse collections of M � N inducing points
have reduced this cost to OðNM2Þ, making computation feasible for large
datasets33,34,45. Here, we used GPFlow, a Gaussian process package based on the
TensorFlow machine learning library, to fit separate Gaussian process classification
models to data from each experimental participant68. Models were fit using the
Sparse Variational Gaussian Process algorithm coded in GPFlow, using input
variables as described in the text. We used 500 inducing points and trained for
200,000 iterations using the Adam optimizer45,68,69 for both the policy and action
value models. Altering these parameters did not materially change either the fitted
GPs or their sensitivities (see Supplementary Figs. 15 and 16). Model hyperpara-
meters were learned during the training run, an empirical Bayes approach38. We

used a train/test split of 80/20% at the timepoint level to evaluate each model’s
performance; test data were not used to select model parameters.

Sensitivity metrics. To capture the effect of small changes of input variables on
our latent Gaussian Process f, we defined a sensitivity for each input variable as the
(squared) norm of the GP gradient along that direction:

νiðxÞ ¼ σ�1i ðxÞ∇i f ðxÞ
�� ��2 ð13Þ

with i= 1 … 8 indexing each predictor variable in (s, ω) and σi the local uncer-
tainty in ∇i f. This can be motivated by noting that since f is a GP, ∇f is as well (see
Supplementary Note 2). Dividing a collection of squared Gaussian variables (one
per observation) by their standard deviations results in a set of χ2 variables. Viewed
another way, by normalizing by the uncertainty σi, we are downweighting highly
uncertain gradients in our sensitivity measure (see Supplementary Note 4).

When we consider a total sensitivity to opponent actions, we combine
sensitivities to opponent action and velocity into a single metric:

ς ¼ L�1∇~x f ðxÞ
�� ��2 ð14Þ

where ς is the opponent sensitivity metric, ~x � ðyopponent; vopponentÞ and L is the
Cholesky factor of the covariance of ∇~xf (LLT= Σx). This is equivalent to
combining the gradients for opponent position and velocity by first performing a
PCA on these two coordinates and weighting each principal component equally in
the calculation. As with the νi above, it can be shown that this index has a known
distribution (noncentral χ2), allowing us to calculate uncertainty in the action
sensitivity metric at each timepoint (see Supplementary Note 4).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The dataset generated and analysed during the current study are available on Open
Science Framework (https://doi.org/10.17605/OSF.IO/EVFG5) (ref. 70).

Code availability
The analysis code that support the findings of this study have been made available at
https://github.com/krm58/PenaltyShot_Behavior.
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