Systematically evaluate spatial frequency sensitivity as function
of eccentricity in V1, V2, and V3
Create annuli and rotating wedges with spatial frequencies
spanning .1 to 10 cpd (and potentially test different patterns:
sine waves in different directions, random lines, etc.)
Subjects fixate at center of stimuli, perform distractor task
For each voxel, fit parameterized tuning curves (based on
eccentricity, visual area)
Please give feedback!
Bibliography
D'Souza, D. V., Auer, T., Frahm, J., Strasburger, H., & Lee,
B. B. (2016). Dependence of chromatic responses in v1 on visual
field eccentricity and spatial frequency: an fmri study. JOSA A,
33(3), 53-64.
Farivar, R., Clavagnier, S., Hansen, B. C., Thompson, B., & Hess,
R. F. (2017). Non-uniform phase sensitivity in spatial frequency
maps of the human visual cortex. The Journal of Physiology, 595(4),
1351-1363. http://dx.doi.org/10.1113/jp273206
Henriksson, L., Nurminen, L., Hyvarinen, Aapo, & Vanni,
S. (2008). Spatial frequency tuning in human retinotopic visual
areas. Journal of Vision, 8(10), 5. http://dx.doi.org/10.1167/8.10.5
Hess, R. F., Li, X., Mansouri, B., Thompson, B., & Hansen,
B. C. (2009). Selectivity as well as sensitivity loss characterizes
the cortical spatial frequency deficit in amblyopia. Human Brain
Mapping, 30(12), 4054-4069. http://dx.doi.org/10.1002/hbm.20829
Kay, K. N., Naselaris, T., Prenger, R. J., & Gallant,
J. L. (2008). Identifying Natural Images From Human Brain
Activity. Nature, 452(7185),
352-355. http://dx.doi.org/10.1038/nature06713
Kay, K. N. (2011). Understanding Visual Representation By Developing
Receptive-Field Models. Visual Population Codes: Towards a Common
Multivariate Framework for Cell Recording and Functional Imaging,
(), 133-162.
Sasaki, Y., Hadjikhani, N., Fischl, B., Liu, A. K., Marret, S.,
Dale, A. M., & Tootell, R. B. (2001). Local and global attention are
mapped retinotopically in human occipital cortex. Proceedings of the
National Academy of Sciences, 98(4), 2077-2082.